Critical Care Chemistry

Will Krost, MD, MBA, NRP Emergency Medicine

Adjunct Assistant Professor, George Washington University, Washington, DC

1

3

2

lonic composition of body fluids Anions EXTRACELLULAR FLUID INTRACELLULAR LAR 142 mEq/L 00 4 mEq/L ---2.4 mEq/L 1.2 mEq/L 103 mEq/L 50 mEa/L ы В - 200 mg/d - 2 to 95 g/d 50 - 20 mm Hg ? - 50 mm Hg ? - 7.0 - 16 g/dl (40 mEq/L) nm Hg -2 g/dl ------(5 mEq/L) ook of Medical Physiology 11e Textbook of M

4

Afferent arteriole Filtration Reabsorption Secretion Excretion ->> ilomerular capillaries owman's capsule -Peritubular capillaries ⇒^{Rena}vein Urinar

Kidney Functions

- Removal of toxins, metabolic wastes, and excess ions from the blood
- Regulation of blood volume, chemical composition, and pH
- Gluconeogenesis during prolonged fasting
- Endocrine functions
 - Renin: regulation of blood pressure and kidney function
 - Erythropoietin: regulation of RBC production
- Activation of vitamin D

- Passive mechanical process driven by hydrostatic pressure
- Governed by (and directly proportional to) Total surface area available for filtration
 - Filtration membrane permeability
 - Net filtration pressure
 - Particle size
 - Charge on the particle

Opposite forces affecting GFR

- Prostaglandin E₂
 - Vasodilator that counteracts vasoconstriction by norepinephrine and angiotensin II
 - Prevents renal damage when peripheral resistance is increased

14

13

15

Major causes of Kidney Failure

- Prerenal Disease
- Vascular Disease
- Glomerular Disease
- Interstitial/Tubular Disease
- Obstructive Uropathy

Remember this...

Water soluble

- Charged

Hydrophilic
 <u>Processed by kidneys</u>

Short half-life

Large molecule

– Polar

Acidic pH (COOH to COO-

- Does not cross membranes

Cell surface receptors

- Has no carrier protein

Low volume of distribution

Fat (lipid) soluble Basic pH (NH3+ to NH2) Can cross membranes

- Uncharged (neutral)
- Non-polar
- Lipophilic
- Processed by liver
- Nuclear or cytoplasmic receptors
- Requires carrier protein
- Long half-life
- High volume of distribution
- Small molecule

29

19

Steroids

- Mechanism of Action "I-KISS"
 - -I Inhibits Phospholipase A₂
 - K Kills T Cells and Eosinophils
 - I Inhibits Macrophage Migration
 - S Stabilizes Mast Cells
 - S Stabilizes Endothelium

30

42

Goldman Hodgkin Katz equatio

ACUTE management

Albuterol

The Beta 2 properties increase activity of the Na/K pump and move K+

ACUTE management

IV Insulin/ Gluco IV HCD3- gtt if p

ACUTE

Rule-out false positive (i-STAT potassium)

Insulin/Glucose

Insulin stimulates the

Hyponatremia

- Etiology
 - Excessive water intake
 - chronic vomiting
 - or diarrhea, - Aldosterone
 - deficiency
 - Dietary is rare
 - Diuretics
- Cellular edema • S/Sx Muscle weakness

• Pathophysiology

- dizziness

46

Hypotension

- tachycardia
- Altered mentation

ACUTE management

- Hypernatremia
- te Change in Na curred within 24 hours) orrect the serum sodium a te of 2-3 mEq/L/h naximum total, 12
- Progressive change in Na chronic sodium imbalance
- If HYPERvolemic, salt and water restriction plus diuretics and V2 antagonists (ADH blockers)

47

Hyponatremia

- Acute Change in Na (occurred within 48 hours)
- (occurred within 48 hours)
 Overtly symptomatic pt (Sz) will be treated with 3% (hypertonic saline).
 Progressive change in Na -chronic sodium imbalance
 Free water restriction (<1 U/day)
 If HYPERvolemic, salt and water restriction plus diuretics and V2 antagonists (ADH blockers)

48

49

27-year-old male presents with lightheadedness and hypotension after spending the day drinking alcohol at a local music festival.

Sodium case

Pt states that he has not been urinating despite significant alcohol intake.

 REMEMBER - Alcohol blocks ADH - He should be peeing like crazy!
 ADH Should cause people to retain fluids - preventing urination and therefore decreases plasma osmolality (increased plasma volume).

52

Sodium case

Summary of findings thus far:

Causation	Physiology	Outcome
Ingested ETOH	Blocks ADH	Water loss
Decreased H2O	Vasodilated	Hypotension
Decreased urine output	ADH should cause water retention - or dehydration	Retain water
Hot temperature	Sweating	Water loss

53

Sodium case

Pt taken to the ED and iSTAT demonstrates the following:

- Na+ is 118mEq/L (normal is 135-145)
- BUN and Creatinine indicate some dehydration

What's the problem here?

54

Sodium case

15 minutes after arrival in the ED, the iSTAT was repeated:

- Na+ is 146mEq/L (normal is 135-145)
- BUN and Creatinine are unchanged, and no new fluids have been given

Who can explain this?

Sodium case

Na+ is 118mEq/L (normal is 135-145)
 BUN and Creatinine are slightly elevated (disproportionate to the Na+)

The sodium indicates the pt's plasma should be concentrated (hyperosmolar) but the minimalistic changes to the BUN/Creatinine indicate that the plasma volume is not reduced enough to give a Na+ of 118. In other words, he is NOT that dehydrated.

55

Sodium case

Upon further questioning:

- The pt had a history of bed wetting that could not be controlled so he was prescribed DDAVP (desmopressin).
- DDAVP is a nasal spray that works like ADH (vasopressin)
- Extrinsic administration supersedes the intrinsic production...

Sodium case Summary of findings thus far:

Causation	Physiology	Outcome	
Ingested ETOH	Blocks ADH	Water loss	
Decreased H2O	Vasodilated	Hypotension	
Decreased urine output	ADH should cause water retention - or dehydration	Retain water	
Hot temperature	Sweating ADH release to compensate -	Water loss Retain water	
DDVAP	Acts like ADH	Retain water	
NET RESULT SHOULD BE WATER RETENTION WHICH MEANS HIS SODIUM SHOULD HAVE BEEN DILUTE (LOW)			

58

Sodium case

The Pt decided that he didn't want to use the porta-potties and as a result, took his DDAVP throughout the day. He continued to drink in the hot environment. As his body temp increased, he vasodilated. Because the DDAVP potentiated his ADH, his cells were dehydrated but his blood volume remained sufficient... His Na+ level was artificially low and once the DDAVP wore off, the pt stopped reabsorbing his sodium.

59

60

