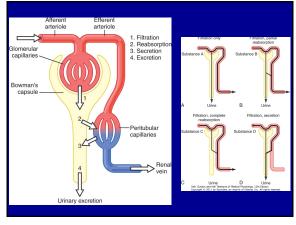
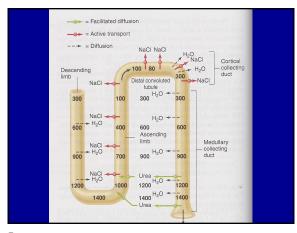
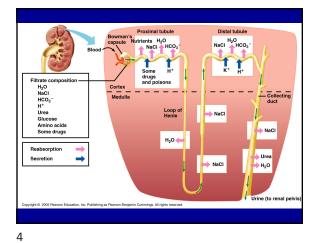
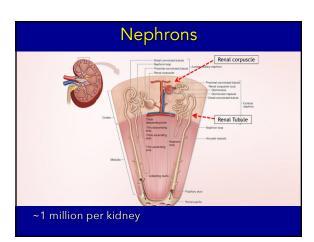
Breaking the Seal...

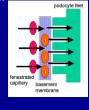

Will Krost, MD, MBA, NRP Paramedic and EMS Medical Director Emergency Physician and Flight Physician Bon Secours Mercy Health Emergency Medicine and Life Flight Toledo, Ohio

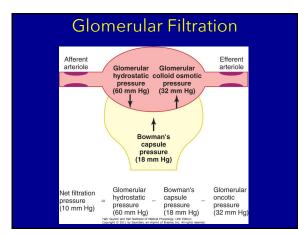

1


Kidney Functions

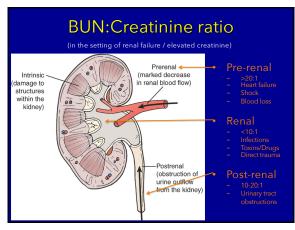

- Removal of toxins, metabolic wastes, and excess ions from the blood
- Regulation of blood volume, chemical composition, and pH
- Gluconeogenesis during prolonged fasting
- Endocrine functions
 - Renin: regulation of blood pressure and kidney function
 - Erythropoietin: regulation of RBC production
- Activation of vitamin D

2





Glomerular Filtration

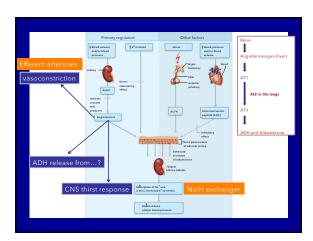

- Passive mechanical process driven by hydrostatic pressure
- Governed by (and directly proportional to)
 - Total surface area available for filtration
 - Filtration membrane permeability
 - Net filtration pressure
 - Particle sizeCharge on the particle

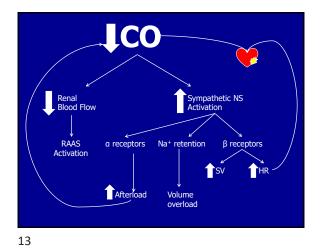
7

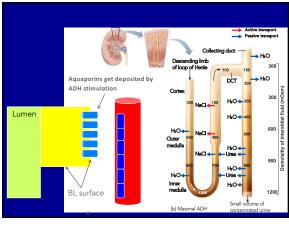
9

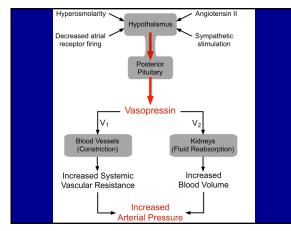
Glomerular Filtration

- Passive mechanical process driven by hydrostatic pressure - primarily
- Indirectly measured by creatinine and creatinine clearance calculation

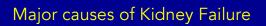

			Kidney Disease
Stage of Disease	Description	GFR ^a (mL/min per 1.73 m²)	Kidney
1	Kidney damage with normal or increased GFR	≥90	Failure Less than 15) (More than 60)
2	Kidney damage with mildly decreased GFR	60-89	GFR
3	Moderately decreased GFR	30-59	
4	Severely decreased GFR	15-29	60 100
5	Kidney failure	<15 (or undergoing dialysis)	

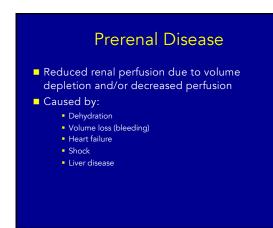

8

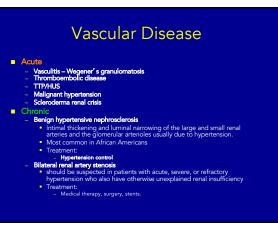

Opposite forces affecting GFR


Prostaglandin E₂

- Vasodilator that counteracts vasoconstriction by norepinephrine and angiotensin II
- Prevents renal damage when peripheral resistance is increased







15

- Prerenal Disease
- Vascular Disease
- Glomerular Disease
- Interstitial/Tubular Disease
- Obstructive Uropathy

Glomerular Disease

Nephritis

- Inflammation seen on histologic exam
- Active sediment: Red cells, white cells, granular casts, red cell casts
- Variable degree of proteinuria (< 3g/day)
- Nephrotic

 - No inflammationBland sediment: No cells, fatty casts
 - Nephrotic range proteinuria (>3.5 g/day)
 - Nephrotic syndrome = proteinuria + hyperlipidemia + edema

19

AKI: Medication Induced

- Diuretics
- Contrast media
- ACE inhibitors
- Antibiotics
- Vancomycin, Gentamicin, Quinolones, Nitrofurantoin, Cephalosporins

20

Chronic Renal Failure

- □ Is a gradual & irreversible deterioration
- Usually not diagnosed until 75% of function is lost

Causes

- Diabetes mellitus 43%
- Hypertension 26%
- Inflammatory, immunological, or hereditary diseases
- May follow acute failure

Consequences

- Nephrons enlarge to compensate
- Overburdened nephrons degenerate
- End-stage renal disease occurs

Stage of Disease GFR^a (mL/min per 1.73 m²) Description Kidney damage with normal or increased GFR ≥90 Kidney damage with mildly decreased GFR 60-89 Moderately decreased GFR 30-59 Severely decreased GFR 15-29 Kidnev failure <15 (or undergoing dialysis

Steroids

Mechanism of Action "I-KISS"

-I – Inhibits Phospholipase A₂

-S - Stabilizes Mast Cells

-S - Stabilizes Endothelium

-K - Kills T Cells and Eosinophils

- I - Inhibits Macrophage Migration

21

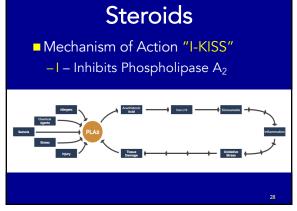
Remember this...

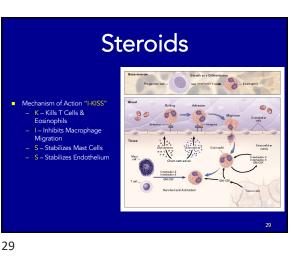
Fat (lipid) soluble

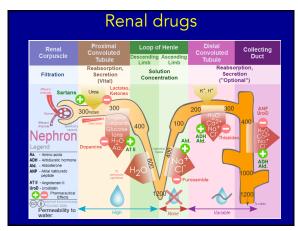
- Basic pH (NH3+ to NH2)
- Can cross membranes
- Uncharged (neutral)
- Non-polarLipophilic
- Processed by liver
- Nuclear or cytoplasmic receptors
- Requires carrier protein
- Long half-life
- High volume of distribution
- Small molecule

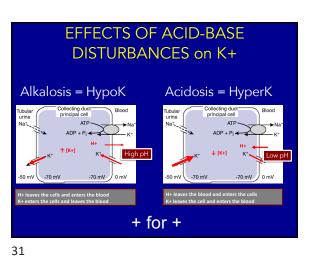
- Water soluble

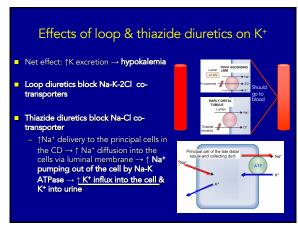
 - Does not cross membranes
 - Charged
 - Polar

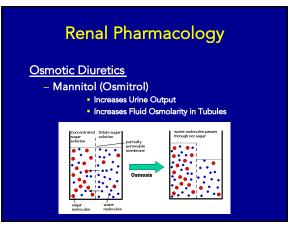

 - Processed by kidneys
 - Cell surface receptors
 - Has no carrier protein


26

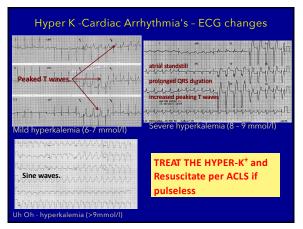

- Acidic pH (COOH to COO-

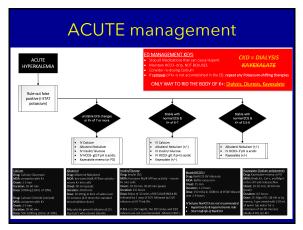

- Hydrophilic

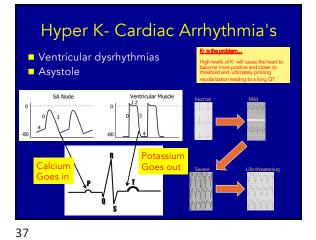

- Short half-life
- Low volume of distribution
- Large molecule











36

EFFECTS OF K-SPARING DIURETICS

ON K+ EXCRETION

-50 mV

-spai

Na*

urine

stimulatory effect of aldosterone on Na⁺

reabsorption and K⁺

secretion

STAL TUBULE AND COLLECTING

Principal cell of the late dista tubule and collecting duct

Blood 0 mV

► Na

ACUTE management Calcium for HyperK
 Interferes with the excess excitation caused by K+ Blocks the K+ channels CaCl in adults, Only use Ca⁺⁺ if the QRS is wide! $p_{\mathrm{K}}[\mathrm{K}^{+}]_{\mathrm{o}} + p_{\mathrm{Na}}[\mathrm{Na}^{+}]_{\mathrm{o}} + p_{\mathrm{Cl}}[\mathrm{Cl}^{-}]_{\mathrm{i}}$ RT $V_{\rm m} =$ -ln F $p_{\rm K}[{\rm K}^+]_{\rm i} + p_{\rm Na}[{\rm Na}^+]_{\rm i} + p_{\rm Cl}[{\rm Cl}^-]$ Goldman Hodgkin Katz equati

ACUTE management

Insulin/Glucose

- Na/K pump and increases it's activity. Moving K+ into the cell.
- Glucose will correct any hypoglycemia associated with the insulin administration


k BGL levels – ose is not necessary in a lycemic patie

40

41

Hypernatremia • Pathophysiology Etiology • net water loss or a - Dehydration sodium gain - Water deprivation - Dietary intake • S/Sx Intense thirst • HTN • Edema Agitation Convulsions

42

ACUTE management

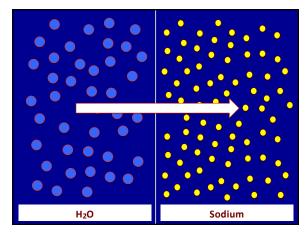
Hypernatremia

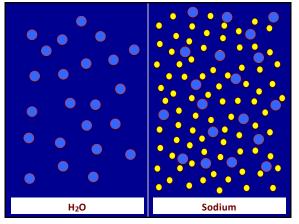
-

- Acute Change in Na (occurred within 24 hours) correct the serum sodium at rate of 2-3 mEq/L/h (maximum total, 12
- rate of 2-3 mEq/Ufi (maximum total, 12 mEq/Ud)
 Progressive change in Na -chronic sodium imbalance
 corrected at a rate not to exceed 0.5 mEq/Uh and a total of 8-10 mEq/day
 If HYPERvolemic, salt and water restriction plus diuretics and V2 antagonists (ADH blockers)
- Hyponatremia
- Acute Change in Na (occurred within 48 hours) Overtly symptomatic pt (Sz) will be treated with 3% (hypertonic saline).
- (hypertonic saline).
 Progressive change in Na -chronic sodium imbalance
 Free water restriction (<1 U/day)
 If HYPERvolemic, salt and water restriction plus diuretics and V2 antagonists (ADH blockers)

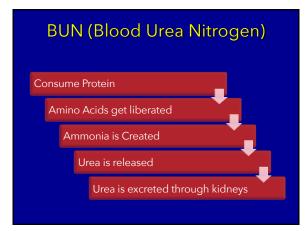
Hyponatremia

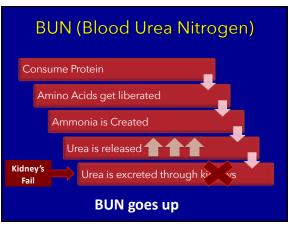
Etiology

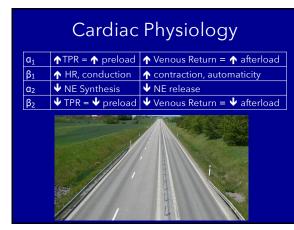

- Excessive water intake
- chronic vomiting or diarrhea,

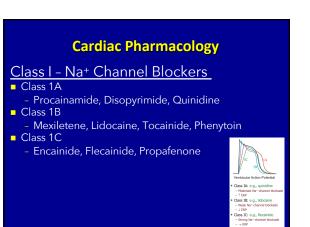

- Aldosterone deficiency

- Dietary is rare
- Diuretics

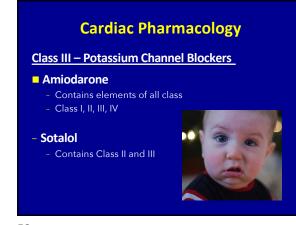

• Pathophysiology

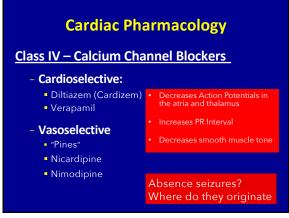

- Cellular edema
- S/Sx
- Muscle weakness
- dizziness
- Hypotension
- tachycardia
- Altered mentation



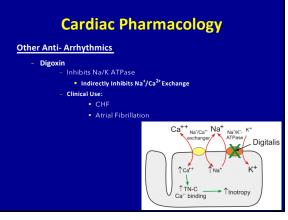


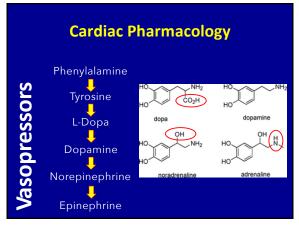


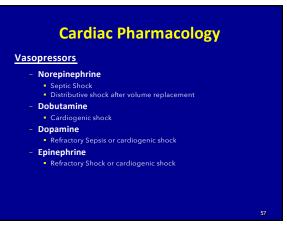


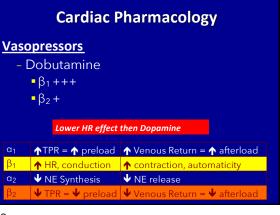


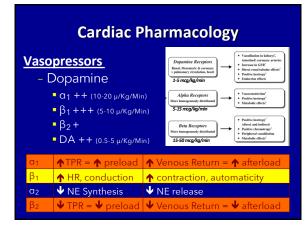
Cardiac Pharmacology


<u>Class II – Beta Blockers</u>









Va	<u>isopressors</u>
	- Norepinephrine
	• a ₁ ++++
	• B ₁ +++
<mark>01</mark>	↑TPR = ↑ preload ↑ Venous Return = ↑ afterload
<mark>α1</mark> β1	↑ TPR = ↑ preload ↑ Venous Return = ↑ afterload ↑ HR, conduction ↑ contraction, automaticity
β1	\uparrow HR, conduction \uparrow contraction, automaticity

